新一代光鑷——全息光鑷
光鑷技術(shù)在分子生物學(xué)、膠體科學(xué)、實驗原子物理等領(lǐng)域中具有極其重要的作用,光鑷本身也不斷發(fā)展并產(chǎn)生許多衍生光鑷技術(shù)。
摘要:光鑷技術(shù)在分子生物學(xué)、膠體科學(xué)、實驗原子物理等領(lǐng)域中具有極其重要的作用,光鑷本身也不斷發(fā)展并產(chǎn)生許多衍生光鑷技術(shù)?臻g光調(diào)制器(SLM)所形成的全息光鑷,在多粒子操控方面的優(yōu)勢,為光鑷技術(shù)走向?qū)嵱没、?guī)模工業(yè)生產(chǎn)打開了新局面,是目前光鑷家族極具活力的成員。本文簡單介紹了全息光鑷的原理和應(yīng)用,以及市面上唯一的商用全息光鑷系統(tǒng)--美國Meadowlark(BNS)公司的全息光鑷系統(tǒng)CUBE。 引言 光鑷又稱單光束粒子阱,是A. Ashkin在1969年以來關(guān)于光與微粒子相互作用實驗的基礎(chǔ)上于1986 年發(fā)明的。單光束粒子阱實質(zhì)上是光輻射壓梯度力阱,是基于散射力和輻射壓梯度力相互作用而形成的能夠網(wǎng)羅住整個米氏和瑞利散射范圍粒子的勢阱。它是由高度匯聚的單束激光形成的,可彈性地捕獲從幾nm 到幾十μm 的生物或其他大分子微粒 (球) 、細胞器等,并在基本不影響周圍環(huán)境的情況下對捕獲物進行亞接觸性、無損活體操作。 光鑷自1986 年發(fā)明以來,以其非接觸、低損傷等優(yōu)點,在激光冷卻、膠體化學(xué)、分子生物學(xué)等領(lǐng)域的實驗研究中發(fā)揮了極其重要的作用。隨著光鑷技術(shù)應(yīng)用領(lǐng)域的不斷擴大,為適應(yīng)更多的研究需求,光鑷技術(shù)本身也在向?qū)崟r可控的復(fù)雜光阱方面不斷地改進。目前研究人員經(jīng)過不斷地改進實驗方法以及控制樣品的布朗運動,可以在秒的時間尺度上實現(xiàn)埃量級精度的位移測量。同時可以捕獲并觀察到最小達25 nm 的粒子,并有望捕獲更小的納米粒子。在過去的幾十年里,光鑷技術(shù)的發(fā)展使人們較詳細地了解在復(fù)雜的生物系統(tǒng)中分子的運動機制成為可能。就表現(xiàn)形式而言,光鑷儀器由最初的單光束梯度力光阱逐漸演化出了許多類型的光學(xué)勢阱。如雙光鑷、三光鑷、四光鑷、掃描光鑷、飛秒光鑷等。這一系列光鑷的衍生技術(shù)不僅豐富了光鑷家族,更為生物科學(xué)等不同領(lǐng)域在微納尺度的研究提供了一個非常巧妙的工具,如測量雙鏈DNA 的解螺旋過程、研究分子馬達的運動機制、分離水稻染色體等。多光阱操控技術(shù)在眾多的實驗研究中顯得越來越重要。光鑷技術(shù)在一個由簡單的單光束梯度力光阱向多光鑷及阱位可控的復(fù)雜光鑷的不斷發(fā)展過程中,全息光鑷作為一種產(chǎn)生多光阱或新型光學(xué)勢阱的方法脫穎而出。它不僅能構(gòu)成各種功能的光阱,并且還能實現(xiàn)三維光阱陣列,并且?guī)恿艘幌盗械难芯亢桶l(fā)展?茖W(xué)家Grier預(yù)言,全息光鑷將引發(fā)光學(xué)操縱的一場技術(shù)革命。 全息光鑷的原理 全息元件是構(gòu)成全息光鑷的關(guān)鍵元件,它是利用底片記錄物光和參考光所形成的干涉圖樣,物光場再現(xiàn)時,只需用原來的參考光照射全息元件,即可獲得重建的物光場。全息光鑷就是利用全息元件構(gòu)建的具有特定功能的光場而形成的光鑷。所形成的光場性質(zhì)的不同,全息光鑷會實現(xiàn)不同的功能,如單粒子的旋轉(zhuǎn)、多粒子的操控和分選等。最早的全息光鑷由芝加哥大學(xué)Eric R. Dufresne 等于1998 年實現(xiàn),他們使用衍射光學(xué)元件(DOE)將準直的激光束分成多個獨立的光束,通過強會聚透鏡聚焦后形成多光鑷。構(gòu)建全息光鑷的關(guān)鍵是根據(jù)實際需要選擇合適的全息元件。傳統(tǒng)生成全息元件的方法是利用相干光干涉制作的,其缺點是所拍攝的全息元件存在衍射效率低、制作費時以及通用性差等,因而它在全息光鑷中并沒有得到廣泛的應(yīng)用。目前全息光鑷的全息元件多由空間光調(diào)制器(SLM)形成。常見的空間光調(diào)制器有液晶空間光調(diào)制器、磁光空間光調(diào)制器、數(shù)字微鏡陣列(DMD)、多量子阱空間光調(diào)制器以及聲光調(diào)制器等。還可以用紫外光刻來制作特定的衍射光學(xué)元件來調(diào)制光場。現(xiàn)在用的較多的是由計算機尋址的液晶空間光調(diào)制器實現(xiàn)全息元件,通過改變?nèi)⒃涂梢允沟盟纬傻墓廒遄鲃討B(tài)變化。 在計算機出現(xiàn)之前,需要采用激光全息的方法形成有限形狀的全息圖。目前在計算機的輔助下,可以實現(xiàn)任意形狀的全息圖。不過,每實現(xiàn)一種新設(shè)計的光阱,都需要重新計算相應(yīng)的全息圖。隨著計算機速度的不斷刷新以及新的算法的出現(xiàn),在一般的科研實驗室已經(jīng)可以很容易實現(xiàn)任意形狀的全息光鑷。原則上全息光鑷可以產(chǎn)生任意形狀、大小、數(shù)量的光阱。通過改變捕獲光的相位分布,可以使捕獲粒子在光阱中按設(shè)定的路線運動,為實現(xiàn)光鑷分選粒子提供更加方便的工具。隨著激光捕獲技術(shù)的不斷進步以及捕獲對象的不斷變化,傳統(tǒng)的單光束梯度力光阱已經(jīng)不能滿足微觀粒子捕獲的新需求。作為新興的光鑷技術(shù),全息光鑷的加盟使得光鑷家族充滿活力,全息光鑷在捕獲和操控多粒子和實現(xiàn)表面等離子體共振捕獲粒子等領(lǐng)域展現(xiàn)出極大的應(yīng)用前景。充分認識全息光鑷的優(yōu)缺點有助于人們在設(shè)計全息光鑷時,充分利用其優(yōu)點,克服不足之處,設(shè)計出滿足實際需要的性能優(yōu)越的全息光鑷,使之在分子生物學(xué)、生物化學(xué)、納米制造等領(lǐng)域發(fā)揮其獨特的優(yōu)勢,為交叉學(xué)科的研究提供更多有價值的信息。 |
1.行業(yè)新聞、市場分析。 2.新品新技術(shù)(最新研發(fā)出來的產(chǎn)品技術(shù)介紹,包括產(chǎn)品性能參數(shù)、作用、應(yīng)用領(lǐng)域及圖片); 3.解決方案/專業(yè)論文(針對問題及需求,提出一個解決問題的執(zhí)行方案); 4.技術(shù)文章、白皮書,光學(xué)軟件運用技術(shù)(光電行業(yè)內(nèi)技術(shù)文檔);
如果想要將你的內(nèi)容出現(xiàn)在這里,歡迎聯(lián)系我們,投稿郵箱:service@opticsky.cn
專業(yè)技術(shù)
24小時人氣排行
- 大連理工褚金奎團隊利用曲面型微透鏡陣列結(jié)構(gòu)實現(xiàn)人工復(fù)眼
- 上海光機所在二氧化釩連續(xù)激光相變研究方面取得進展
- 上海光機所在皮秒激光器精密光同步研究方面取得新進展
- 用于6G無線通信的石墨烯增強型太赫茲非線性光學(xué)技術(shù)
- 我國科研團隊合作提出高能粒子渦旋特性探測的原創(chuàng)方案
- 泰興市和宸晶體科技有限公司
- 效率23.4%!西湖大學(xué)在柔性疊層太陽電池領(lǐng)域取得重要突破
- 華中科技大學(xué)李霖團隊在里德堡量子調(diào)控領(lǐng)域取得新突破
- 我國科研人員研制出超導(dǎo)雙光子空間符合計數(shù)器
最新文章
- 我國科研人員研制出超導(dǎo)雙光子空間符合計數(shù)器
- 華中科技大學(xué)李霖團隊在里德堡量子調(diào)控領(lǐng)域取得新突破
- 泰興市和宸晶體科技有限公司
- 效率23.4%!西湖大學(xué)在柔性疊層太陽電池領(lǐng)域取得重要突破
- 我國科研團隊合作提出高能粒子渦旋特性探測的原創(chuàng)方案
- 上海光機所在皮秒激光器精密光同步研究方面取得新進展
- 用于6G無線通信的石墨烯增強型太赫茲非線性光學(xué)技術(shù)
- 創(chuàng)新技術(shù)實現(xiàn)超寬帶太赫茲偏振態(tài)的高精度動態(tài)調(diào)控
- 大連理工褚金奎團隊利用曲面型微透鏡陣列結(jié)構(gòu)實現(xiàn)人工復(fù)眼
- 上海光機所在二氧化釩連續(xù)激光相變研究方面取得進展