由平行平面構(gòu)成的光學(xué)層在光學(xué)中廣泛應(yīng)用。層狀結(jié)構(gòu)可以用作許多不同情況的模型,像平板和標(biāo)準(zhǔn)具;谶@個事實,光與層狀結(jié)構(gòu)相互作用的主題一直引起大家的注意并且對此已經(jīng)進行了大量的研究。 Ksj -zR;
i/ )am9 在這類研究中,大多數(shù)觀點都側(cè)重于平面波,然而僅僅少數(shù)的研究使用了平面波譜方法(SPW)來考慮一般的電磁場。例如,參考文獻[1-6]中研究了各向同性-各向同性的界面上,高斯光束的反射率和透射率;在參考文獻[7-11]中研究了各向同性層或者平板的情況;參考文獻[12-22]討論了各向同性-各向異性界面的情況,在參考文獻[23-26]中則討論了各向異性層或者平板的情況。 Y>G@0r BG
sVv xHkt@ 上面所提到的許多研究都用于特定的研究主題,像[1,3,5]中研究了高斯光束全內(nèi)反射的橫向偏移,并且他們常常關(guān)注于具體的配置。因此,將這些方法推廣到更一般的情況的可能性受到了限制。 72y0/FJ
[@b&? b~K 在這篇文章中,我們從一個更一般的觀點來考慮此問題。光學(xué)層幾乎不會單獨使用;相反,他們常常是一個光學(xué)系統(tǒng)的一部分并且和其他的元件一起使用,如圖1中所示。基于此事實,我們遵循場追跡的概念[27],并使用不同的場追跡算子組合[28-32],如圖1中所示,以對一個包含了層介質(zhì)元件的系統(tǒng)進行物理光學(xué)模擬?紤]到模擬是對整個系統(tǒng)而不是單個元件,仿真層結(jié)構(gòu)必須與系統(tǒng)的前后部分相連接。這要求我們傳播步驟(圖1中的P)進行適當(dāng)?shù)目紤],將前一個元件的輸出連接到當(dāng)前元件的輸入,并將當(dāng)前元件的輸出傳遞到下一個元件。一般情況下,這樣的傳輸步驟會出現(xiàn)在平行或者非平行平面之間。在參考文獻[28,29]中已經(jīng)提到了平行平面間幾種有效的傳輸方法,在參考文獻[33]中則可以找到對非平行平面間傳輸?shù)囊粋詳細(xì)的討論。在這篇文章中,我們不會研究傳輸步驟,但會關(guān)注層狀結(jié)構(gòu)的元件算子C。 $?<Z!*x
u TK,& 此外,從數(shù)值計算的觀點出發(fā),為了執(zhí)行一個連續(xù)且有效的系統(tǒng)模擬,要求元件算子C qHrA%k^!2O
Md2>3- 正確地處理采樣場數(shù)據(jù)并和其他的算子以一種統(tǒng)一的格式傳遞場數(shù)據(jù); 4.=3M
)V6Hl@v 優(yōu)化數(shù)值計算的效率。 U4-g^S[
!&/{E
[ 考慮到上述兩個標(biāo)準(zhǔn),我們開發(fā)了一種具有自動數(shù)值采樣規(guī)則的SPW方法。與之前一些利用積分方法對空間和角譜相關(guān)的傅里葉變換進評估的研究相比(如參考文獻[23]中的二維中點規(guī)則和參考文獻[12-14,20,25]中的Stamnes–Spjelkavik–Pedersen方法[34]),我們使用了快速傅里葉變換(FFT)技術(shù),此技術(shù)在大部分?jǐn)?shù)值軟件包中容易訪問并且效率高。再加上在角譜域中經(jīng)過深入考慮的數(shù)值采樣規(guī)則,我們的方法具有一般適用性,對層元件和入射場沒有任何限制。因此,此算法可以直接包含在一個物理光學(xué)系統(tǒng)模擬之中。 )oPLl|=h ps%q9}J 圖1.結(jié)合使用不同的場追蹤算子來模擬光學(xué)系統(tǒng): C是元件算子,P是相鄰元件之間的傳輸算子。