Speckle Phenomena in Optics: Theory and Applications
m6MOW& zVi15P$ Joseph W. Goodman
'qArf Io|X#\K Contents
5jgdbHog] 1 Origins and Manifestations of Speckle 1
C@Nv;;AlU 1.1 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
:qR=>n= 1.2 Intuitive Explanation of the Cause of Speckle . . . . . . . . . . . . . . . . . . . . . . . . . 2
Wxkx,q? 1.3 Some Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
T/c<23i 2 Random Phasor Sums 7
|+:h|UIUQ 2.1 First and Second Moments of the Real and Imaginary Parts of the Resultant Phasor . . . . . 8
Xt{*N-v\ 2.2 Random Walk with a Large Number of Independent Steps . . . . . . . . . . . . . . . . . . 9
FVB;\'/ 2.3 Random Phasor Sum Plus a Known Phasor . . . . . . . . . . . . . . . . . . . . . . . . . . 12
;uqx@sx ; 2.4 Sums of Random Phasor Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Uz608u 2.5 Random Phasor Sums with a Finite Number of Equal-Length Components . . . . . . . . . 16
mv
atUe 2.6 Random Phasor Sums with a Nonuniform Distribution of Phases . . . . . . . . . . . . . . . 17
x$wd
O 3 First-Order Statistical Properties of Optical Speckle 23
6AvHavA^Y 3.1 Definition of Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
>S1)YKgz 3.2 First-Order Statistics of the Intensity and Phase . . . . . . . . . . . . . . . . . . . . . . . . 24
!@I}mQ ~ 3.2.1 Large Number of Random Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
tp:\j@dB 3.2.2 Constant Phasor plus a Random Phasor Sum . . . . . . . . . . . . . . . . . . . . . 27
ZUp\Ep} 3.2.3 Finite Number of Equal-Length Phasors . . . . . . . . . . . . . . . . . . . . . . . . 31
6