-
UID:317649
-
- 注冊時間2020-06-19
- 最后登錄2025-02-06
- 在線時間1683小時
-
-
訪問TA的空間加好友用道具
|
POL RIBES-PLEGUEZUELO,1,2,*SITE ZHANG,2ERIK BECKERT,1 RAMONA EBERHARDT,1FRANK WYROWSKI,2AND ANDREAS TüNNERMANN1,2 Q'vIeG"o 1 Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany crF9,p 2 Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Max-Wien-Platz 1, 07743 Jena, Germany *pol.ribes@iof.fraunhofer.de -bG#h)yj P-*RN
摘要 _'o^@v: P7^TRrMF 提出了一種用來仿真激光晶體封裝技術中的誘導應力的方法,并對激光腔內(nèi)部的雙折射效應進行研究。這種方法已經(jīng)由軟件ANSYS 17.0通過熱機械仿真來實現(xiàn)。ANSYS的結果稍后被導入到VirtualLab Fusion軟件中,這款軟件按照波長及偏振性對輸入輸出光束進行分析。研究是建立在一種用于玻璃或晶體光學封裝中低應力焊接技術,也被稱作焊機泵浦技術的背景下。分析結果表明對于由釔鋁石榴石活性激光晶體構建的激光腔,二次諧波發(fā)生器β-鋇硼酸鹽,以及由低應力焊機泵浦技術組裝的熔融石英的輸出激光鏡來說,輸入及輸出激光光束幾乎沒有差異。 Wl^/=I4p# ○c2017 Optical Society of America OCIS codes: (140.0140) Lasers and laser optics; (220.0220) Optical design and fabrication; (260.1440) Birefringence. p5D3J[?N *PA1iNdKS 參考及鏈接 =h1 QN 2T{-J!k 1. S. Ferrando, M. Galan, E. Mendez, E. Romeu, D. Montes, A. Isern, M. Jardi, J. Juliachs, G. Viera. “Innovative optical techniques used in the Raman instrument for Exomars,” in ICSO International Conference on Space Optics,Greece 2010. mSqk[Ig\ 2. P. Ribes-Pleguezuelo, C. Koechlin, M. Hornaff, A. Kamm, E. Beckert, G. Fiault, R. Eberhardt, A. Tünnermann,“High-precision optomechanical lens system for space applications assembled by a local soldering technique,” Opt.Eng. 55(6), 065101 (2016). 1[,#@!k@ 3. E. Beckert, T. Oppert, G. Azdasht, E. Zakel, T. Burkhardt, M. Hornaff, A. Kamm, I. Scheidig, R. Eberhardt, A.Tünnermann, F. Buchmann, “Solder jetting–a versatile packaging and assembly technology for hybrid photonics and optoelectronical systems,” in Proceedings of IMAPS 42nd Int. Symp. on Microelectronics, California, (2009) pp. 406. c"_H%x<[ 4. W. Koechner, Solid-State Laser Engineering (Springer, 1999). aF_ZV bS 5. C. Rothhardt, J. Rothhardt, A. Klenke, T. Peschel, R. Eberhardt, J. Limpert, A. Tünnermann “BBO-sapphire sandwich structure for frequency conversion of high power lasers,” Opt. Mater. Express 4, 1092 (2014). (*@~HF,t= 6. J. F. Nye, Physical properties of crystals (Oxford Universty, 2010). {yl/T:Bh& 7. Q. Lü, U. Wittrock, S. Dong, “Photoelastic effects in Nd:YAG rod and slab lasers,” Opt. Laser Technol. 27(2), 95–101 (1995). :+X2>Lu$FA 8. G. Golub, and F. Charles, Matrix Computations (Johns Hopkins University, 1983). ocuNrkZ 9. H. Bremmer, “The W.K.B approximation as the first term of a geometric-optical series,” Commun. Pure. Appl. Math. 4, 105–115 (1951). 7{6cLYl 10. F. Wyrowski and M. Kuhn, “Introduction to field tracing,” J. Mod. Opt. 58, 449–466 (2011). ~P.-3 11. D. W. Berreman, “Optics in stratified and anisotropic media: 4 × 4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). 2+hfbFu,1 12. G. D. Landry and T. A. Maldonado, “Gaussian beam transmission and reflection from a general anisotropic multilayer structure,” Appl. Opt. 35, 5870–5879 (1996). Hr64M0V3B 13. L. Li, “Reformulation of the Fourier modal method for surface-relief gratings made with anisotropic materials,” J. Mod. Opt. 45, 1313–1334 (1998). TPmZ/c^ 14. L. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20, 655–660 (2003). LxYM"_1A; 15. Physical optics design software “Wyrowski VirtualLab Fusion”, developed byWyrowski Photonics UG, distributed by LightTrans GmbH, Jena Germany. http://www.lighttrans.com. % /wP2O< 16. S. Zhang, Applied Computational Optics Group, Institute of Applied Physics, Friedrich Schiller University Jena,Max-Wien-Platz 1, 07743 Jena, Germany, C. Hellmann and F. Wyrowski are preparing a manuscript to be called _s#/f5<:B “Algorithm for the propagation of electromagnetic fields through etalons and crystals.” znDtM1sLeV 17. D. Eimerl, L. Davis, S. Velsko E. K. Graham A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987). |'>E};D 18. W. Martienssen, H. Warlimont, Springer handbook of condensed matter and materials data (Springer, 2005). t,as{.H{h 19. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). 4N^Qd3[d 20. W. L. Bond, “Measurement of the refractive index of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965). lyc{Z%!3 21. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook of nonlinear optical crystals (Springer, 1999). r
z>zdj5} 22. D. Asoubar, S. Zhang, F. Wyrowski, M. Kuhn, “Laser resonator modeling by field tracing: a flexible approach for fully vectorial transverse eigenmode calculation,” J. Opt. Soc. Am. B 31(11), 2565-573 (2014). |<o>$;mZ 23. D. Asoubar, S. Zhang, F.Wyrowski, “Simulation of birefringence effects on the dominant transversal laser resonator mode caused by anisotropic crystals,” Opt. Express 23, 13848-3865 (2015). Yi! >8 24. D. Asoubar and F. Wyrowski, “Fully vectorial laser resonator modelling of continuous-wave solid-state lasers including rate equations, thermal lensing and stress-induced birefringence,” Opt. Express 23, 1880218822 (2015). D-\'P31 25. P. Ribes-Pleguezuelo, A. Moral, M. Gilaberte, P. Rodríguez, G. Rodríguez, M. Laudisio, M. Galan, M. Hornaff.E. Beckert, R. Eberhardt, A. Tünnermann, “Assembly processes comparison for a miniaturized laser used for the Exomars European Space Agency mission,” Opt. Eng. 55, 116107 (2016). mk3e^,[A Z6
|'k:R8 1. 簡介 @R Yb-d cbHn\m)J, 現(xiàn)今,激光設備廣泛分布在不同的市場領域。現(xiàn)有的不同激光市場應用已經(jīng)將對激光設備的要求推向了緊湊型、高效率和高可靠性的高度嚴格要求,以便能夠在不同的設備條件下有效執(zhí)行。此外,在汽車市場或太空應用領域中對激光設備的使用,一直在挑戰(zhàn)激光制造商來獲得在極端情況下也能夠使用的更可靠緊湊的激光設備[1]。在獲得具有高可靠性和高效率的微型化裝置的情況下,最好的選擇仍然是由膠粘劑組裝成的二極管泵浦固體激光器(DPSSL)。然而,設備需要高的運行和存儲溫度范圍,自由釋氣或真空兼容性,更高的熱導率和電導率,甚至抗輻射組件,都導致需要尋找新的連接技術。目前有幾種低壓焊接技術可以用于此類設備[2]。然而,為了不損害器件的小型化,同時提供無應力的激光束諧振腔,我們必須研究封裝誘導應力和隨之而來的激光元件雙折射現(xiàn)象。在本刊物中,我們研究了低應力封裝激光焊接泵浦技術所產(chǎn)生的激光晶體的應力封裝效應,此外,該方法也適用于其他激光設備的封裝技術。
?tM].
|