LED 路燈防浪涌干擾設(shè)計(jì)中亟待解決的絕緣耐壓?jiǎn)栴} n\ 'PNB
a B$x(8pP@
作者:陳超中 施曉紅 於立成 劉爾立 楊樾 強(qiáng)耀根 8]K+,0m6
VUon>XQ
G
摘 要:本文闡述了目前LED 路燈常用的防浪涌或防瞬變抑制電路的原理,指出了具有防浪涌干擾功能的LED 路燈普遍存在的絕緣耐壓?jiǎn)栴}。提出LED 路燈的EMS 設(shè)計(jì)應(yīng)建立在滿足安全要求的基礎(chǔ)上的理念。強(qiáng)調(diào)了LED 路燈設(shè)計(jì)輸入的充分性。 M!YGv
++sbSl)Q
關(guān)鍵詞:LED 路燈 防浪涌干擾 防雷 耐壓 /IQ$[WR cx
0fGt7 "Q
防浪涌或防瞬變干擾常用的器件有氣體放電管、金屬氧化物壓敏電阻、硅瞬變電壓吸收二極管和固體放電管幾種,以及它們的組合。LED 路燈防雷電干擾電路及其裝置一般與LED 控制裝置成為一體,常用的有氣體放電管和壓敏電阻的組合。 '4Drs}j5
G%A!yV
一、氣體放電管和壓敏電阻組合構(gòu)成的抑制電路原理 }}qY,@eeX
5BJn_<
由于壓敏電阻(VDR)具有較大的寄生電容,用在交流電源系統(tǒng),會(huì)產(chǎn)生可觀的泄漏電流,性能較差的壓敏電阻使用一段時(shí)間后,因泄漏電流變大可能會(huì)發(fā)熱自爆。為解決這一問(wèn)題在壓敏電阻之間串入氣體放電管。圖1 中,將壓敏電阻與氣體放電管串聯(lián),由于氣體放電管寄生電容很小,可使串聯(lián)支路的總電容減至幾個(gè)pF。在這個(gè)支路中,氣體放電管將起一個(gè)開關(guān)作用,沒(méi)有暫態(tài)電壓時(shí),它能將壓敏電阻與系統(tǒng)隔開,使壓敏電阻幾乎無(wú)泄漏電流。但這又帶來(lái)了缺點(diǎn)就是反應(yīng)時(shí)間為各器件的反應(yīng)時(shí)間之和。例如壓敏電阻的反應(yīng)時(shí)間為25ns,氣體放電管的反應(yīng)時(shí)間為100ns,則圖2 的R2、G、R3 的反應(yīng)時(shí)間為150ns,為改善反應(yīng)時(shí)間加入R1 壓敏電阻,這樣可使反應(yīng)時(shí)間為25ns。 .[r1Qz7G
){LU>MW{&
金屬氧化物壓敏電阻(MOV)的電壓-電流特性見圖3,金屬氧化物壓敏電阻(MOV)特性參數(shù)見表1。氣體放電管(GDT)的電壓-電流特性見圖4,氣體放電管(GDT)特性參數(shù)見表2。由于浪涌干擾所致,一旦加在氣體放電管兩端的電壓超過(guò)火花放電電壓(圖4 的u1)時(shí),放電管內(nèi)部氣體被電離,放電管開始放電。放電管端的壓降迅速下降至輝光放電電壓(圖4 的u2)(u2 在表2 中的數(shù)值為140V 或180V,與管子本身的特性有關(guān)),管內(nèi)電流開始升高。隨著放電電流的進(jìn)一步增大,放電管便進(jìn)入弧光放電狀態(tài)。在這種狀態(tài)下,管子兩端電壓(弧光電壓)跌得很低(圖4的u3)(u3 在表2 中數(shù)值為15V 或20V,與管子本身的特性有關(guān)),且弧光電壓在相當(dāng)寬的電流變動(dòng)范圍(從圖4 的i1→i2 過(guò)程中)內(nèi)保持穩(wěn)定。因此,外界的高電壓浪涌干擾,由于氣體放電管的放電作用,被化解成了低電壓和大電流的受保護(hù)情況(u3 和i2),且這個(gè)電流(從圖4 的i2→i3)經(jīng)由氣體放電管本身流回到干擾源里,免除了干擾對(duì)燈具可能帶來(lái)的危害。隨著浪涌過(guò)電壓的消退,流過(guò)氣體放電管的電流降到維持弧光放電狀態(tài)所需的最小值以下(約為 DHg)]FQ/
10mA~100mA,與管子本身的特性有關(guān)),弧光放電便停止,并再次通過(guò)輝光放電狀態(tài)后,結(jié)束整個(gè)放電狀態(tài)(熄。。